Bactericidal activity of GAMA Healthcare Ltd. biocide determined using the European Standard Test method BS EN 1276:1997 against: Salmonella typhimurium ATCC 14028.

**July 2006** 

Author:

Authorised by:

P. Humphreys

P. Humphreys

Signature: Polyto Date: 25/7/06
Signature: Polyto Date: 25/7/06



# Tests Carried Out By:

University of Huddersfield

School of Applied Sciences

Queensgate Huddersfield HD1 3DH

# Microbiological Tests

Test Method

British/European Standard BS EN 1276:1997.

Dilution-neutralisation

**Test Procedures** 

Full details of all the test and control procedures

used are given in the Test Method

Disinfectant

GAMA Healthcare Ltd biocide

Batch number: N/A

Date of delivery: June 2006 Storage conditions: 20°C – 25°C Active substances: not specified

Appearance product dilutions: colourless, clear

product solution.

Interfering Substance (Organic Challenge)

Simulated clean conditions:
 0.3 g l<sup>-1</sup> bovine albumin (final

concentration)

2. Simulated dirty conditions:

3.0 g l<sup>-1</sup> bovine albumin (final

concentration)

Temperature

Ambient (25°C)

Contact Time Tested

 $5 (\pm 10 \text{ s})$  minute.

**Test Organisms** 

Salmonella typhimurium ATCC 14028

Culture Medium

Tryptone Soya Agar, Lab M

Incubation

Plates were incubated at 37 °C for 24 - 48 h

Diluent

MRD, Lab M

Neutraliser

Neutraliser, containing 60g/l Tween 80, 60g/l

Saponin, 2g/l L-histidine, 2g/l L-cysteine in

MRD.

#### General Method

A standard suspension of test organisms containing 1.5 – 5.0 x 10<sup>8</sup> cells ml<sup>-1</sup> of bacteria was prepared. 1 ml of interfering substance was pipetted into a Universal bottle, followed by 1 ml of test organism suspension. The mixture was mixed and left for 2 minutes. After 2 minutes 8 ml of disinfectant was added and mixed. In this case the disinfectant was the GAMA Healthcare Ltd biocide. After a contact time of 5 minutes, a 1 ml sample of the reaction mixture was pipetted into 9 ml of neutraliser and left for 5 minutes. A 1 ml sample was then pipetted into 2 Petri dishes and mixed with 15 ml of culture medium tempered at 47 °C. After setting, the Petri dishes were incubated at 37 °C. Colony forming units were counted after 1-2 days incubation and the fraction of surviving organisms calculated.

## Requirements of this standard

The product, when tested as stipulated under simulated clean conditions (0.3 g l<sup>-1</sup> bovine albumin) or dirty conditions (3 g l<sup>-1</sup> bovine albumin) under the required test conditions (25°C, 5 minute contact, for the selected reference strain), shall demonstrate at least a 5 log<sub>10</sub> reduction in viable counts.

#### Results1

Results from the test are summarised in Tables 1 and 2, a full set of results can be found in Table 3.

| Test Conditions               | Contact Time (minutes) | Log <sub>10</sub> Reduction<br>Achieved |
|-------------------------------|------------------------|-----------------------------------------|
| 0.3 g l <sup>-1</sup> (clean) | 5                      | >51                                     |
| 3.0 g l <sup>-1</sup> (dirty) | 5                      | >51                                     |

Table 1. Log<sub>10</sub> reductions in S. typhimurium viable counts following a 5 minute exposure to the test material.

| Referenced Organism                    | Starting<br>concentration<br>CFU ml <sup>-1</sup>                         | Final<br>concentration<br>CFU mΓ¹clean<br>0.3 g Γ¹ Bovine<br>Albumin | Final concentration CFU m\(\Gamma^1\) dirty 3.0 g \(\Gamma^1\) Bovine Albumin |
|----------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Salmonella<br>typhimurium<br>ATCC14028 | 1.7 x 10 <sup>8</sup><br>(171,160 <sup>1</sup> , 20,<br>22 <sup>2</sup> ) | Plate count 3, 3.<br>(Actual 6 log <sub>10</sub> reduction)          | Plate count 5, 2.<br>(Actual 6 log <sub>10</sub> reduction)                   |

CFU = colony forming units

Table 2. Reductions in S. typhimurium viable counts following a 5 minute exposure to the test material.

viable count of bacterial colonies, 1 ml sample of 10°6 bacterial suspension

<sup>&</sup>lt;sup>2</sup> viable count of bacterial colonies, 1 ml sample of 10<sup>-7</sup> bacterial suspension

<sup>1</sup> See Table of results in Appendix 1.



## Interpretation of the Results

When tested against *S. typhimurium* (ATCC 14028) with a 5 minute contact time a full strength GAMA Healthcare Ltd biocide met the requirements of the Standard at ambient temperature (25°C) under simulated clean and dirty conditions.

#### Conclusion

According to EN 1276:1997, the batch provided of GAMA Healthcare Ltd biocide possesses bactericidal activity in 5 minutes at ambient temperature (25°C) under clean conditions (0.3g/l bovine albumin) and dirty conditions (3g/l bovine albumin) for referenced strain *S. typhimurium* (ATCC 14028).

### Signed:

Dr Paul Humphreys School of Applied Sciences University of Huddersfield



# Appendix 1

|                              |                                                                                               |                 |          |                             |                                    | ALIDA | VALIDATIONS |                           |        |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       | 100                    | 9      | - 10    |
|------------------------------|-----------------------------------------------------------------------------------------------|-----------------|----------|-----------------------------|------------------------------------|-------|-------------|---------------------------|--------|------|------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------|-----|----|-------|------------------------|--------|---------|
| Test<br>Organism             | Bacterial                                                                                     |                 | xperim   | ental Co                    | Experimental Conditions Validation | ition | Neutra      | Neutraliser Toxicity      | lity   | ă    | Dilution Neutralisation<br>Control | Neutrali<br>Control | sation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bac  | Bacterial Test<br>Suspension | st  |    | Test  | Test Procedure Results | ure Re | sults   |
| 0                            | Suspension                                                                                    |                 | Clean    | _                           | Dirty                              |       |             | Control                   | Q.     | 0    | Clean                              |                     | Dirty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                              |     |    | Clean | ue                     |        | Dirty   |
| S.<br>typhimurium            |                                                                                               | 2               | 138      | 138 130                     | 124                                | 122   | 2           | 166                       | 158    | Vc 2 | 203 1                              | 169                 | 164 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-6 | 171                          | 160 | 2  | < 15  | 15                     | v      | 15 15   |
|                              |                                                                                               |                 |          |                             |                                    |       |             |                           |        |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-7 | 20                           | 22  | BN | 1.1   | 1.5E+02                | ٧      | 1.5E+02 |
|                              | Nv 1.7E+03 A                                                                                  | A 8             |          | 1.3E+02                     | 1.2E+02                            | 576   | В           | 1.6E+02                   |        | O    | 1.9E+02                            | _                   | 1.6E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z    | 1.7E+08                      |     | œ  | > 2   | 2.E+05                 | ۸      | 2.E+05  |
|                              | ,                                                                                             | /erific         | ation of | Verification of Methodology | fology                             | Pass  | Log10       | Log10 Reductions (cfu/ml) | s (cfu | (ml) | Charles Control                    |                     | The state of the s |      |                              |     |    |       |                        |        |         |
| N is between<br>Nv is betwee | N is between 1.5E+8 cfu/ml and 5E+8 cfu/ml, N = Nv is between 6E+2 cfu/ml and 3E+3 cfu/ml. Nv | and 5E<br>and 3 | E+3 cful | ml, N=                      | 1.7E+08                            | Yes   | Clean       | ^                         | ω      |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       |                        |        |         |
|                              |                                                                                               |                 |          | 11                          | 1.7E+03                            | Yes   | Dirty       | ٨                         | 5      |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       |                        |        |         |
| CLE                          | CLEAN A > 0.05 x Nv when 0.05 x Nv =                                                          | Nv wh           | en 0.05  | = N ×                       | 8.5E+01                            | Yes   |             |                           |        |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       |                        |        |         |
| PIC                          | DIRTY A ≥ 0.05 x Nv when 0.05 x Nv =                                                          | Nv wh           | en 0.05  | × Nv =                      | 8.5E+01                            | Yes   |             |                           |        |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       |                        |        |         |
|                              | B ≥ 0.05 x Nv when 0.05 x Nv =                                                                | Nv wh           | en 0.05  | = NX ×                      | 8.5E+01                            | Yes   |             |                           |        |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       |                        |        |         |
|                              | CLEAN C ≥ 0.5 x B when 0.5 x B =                                                              | 5 x B           | when 0.  | 5 x B =                     | 8.1E+01                            | Yes   | N.          |                           |        |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       |                        |        |         |
|                              | DIRTY C ≥ 0.5 x B when 0.5 x B =                                                              | 5 x B           | when 0.  | 5 x B =                     | 8.1E+01                            | Yes   | 1           |                           |        |      |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                              |     |    |       |                        |        |         |

Table 3. Testing of S. typhimurium (ATCC 14028) the Gamma Health Care Ltd biocide using BS EN 1276:1997.

|  |  | y. |
|--|--|----|
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |